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Structure of the reflection coefficient and the eigenvalue 
problem of the Fokker-Planck equation 

Tom Miyazawat 
Department of Physics, Faculty of Science, University of Tokyo, Tokyo 113, Japan 

Received 24 September 1991 

Abstract. Structure of the reflection coefficient of the Fokker-Planck equation is investi- 
gated. Asymptotic expressions’af the reflection coefficient for small wavenumber (low 
frequency) and large wavenumber (high frequency) are presented. As an application of 
this analysis, a method for calculating the eigenvalues of the Fakker-Planck equation is 
derived. 

i. ioirduciioa 

Diffusion in a one-dimensional potential U ( x )  is described by the Fokker-Planck 
equation [l ,  21 

a J2 J - @(x, t )  = 7 @(x, 1 )  - 2 - [ f ( x ) @ ( x ,  t ) ]  
at Jx ax 

where 

Solutions of (1) show various long time behaviour depending on the asymptotic form 
of U ( x )  at infinity. If U ( x )  diverges faster than 1x1 as x + f m ,  the large-t behaviour 
of @(x, t )  is determined by low-lying eigenvalues of (1). If we set 

@(x, t)=e-”‘+(x) (3) 
where A is the eigenvalue, (1) reduces to 

There are several methods for calculating the eigenvalues of the Fokker-Planck 
equation [3,4]; for example, variational methods or the WKB method. Most of them 
are an application of a method for the Schrodinger equation. (It is well known that a 
Fokker-Planck equation can be transformed into a Schrodinger equation.) However, 
in fact, the eigenvalue problem of the Fokker-Planck equation can be treated more 
simply than that of the Schrodinger equation. In this paper we present a method to 
calculate eigenvalues of the Fokker-Planck equation in a systematic way. It is based 
on the analysis of the reflection coefficients for (1). 

t Present address: Department of Physics, Gakurhuin University, Mejira, Toshima-ku, Tokyo 171, Japan. 
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The reflection coefficients for the interval (a,  b )  are defined as follows. We consider 
the potential n (x ) ,  which is constant outside this interval and coincides with U(x) 
within; 

O(x)= U ( a )  x s a  

= U ( X )  u s x s b  

= U(b) b 5 x. ( 5 )  

Outside (a, b), a solution of the equation 

d -  - 1 d -  
f ( X ) I  -- - U(+) 

dZ - + -2  
dx' 2 dx U+) +P'+ = 0 

can be written as a linear combination of exp(ipx) and exp(-ipx). The reflection 
coefficients R,,  R,, and the transmission coefficient T are defined as quantities such 
that there are two solutions of equation (6) which have the following form outside ( U ,  b): 

$ , ( ~ ; p ) = e ' ~ ~ + R , ( u ,  b;p)e-'" x s a  

b s x  (7a) -eU(a)-u(b)T(a, - b;p) eiPx 

$'(x; P )  = e  U(bl -U(a)~(~ ,  b ; p )  e - i ~ x  x s  a 

b 5 x  (76) 

(figure 1). We may also consider the cases where a = -W or b = W. For such cases the 
transmission coefficient vanishes and only +2 (if U = -m) or +! (if b = m) exists. The 
reflection coefficients R, and R, are in general different, while the transmission 
coefficients T in (7a) and (76) are identical. In this paper we shall mainly deal with 
R,, since R, can be discussed completely parallel to it. 

- - e-ipr + R,(a, b; p) eipx 

Figurcl. Definitionof R,, R,and T.(Thefactorsexp[U(o!- Uib)landerp[L'(b)- U ( a ) ]  
are ~mi!!ed in !he figure.! 
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The analysis of the reflection coefficient is useful not only for the calculation of 
eigenvalues but also for the study of the asymptotic behaviour of solutions for the 
cases where the potential U(x) does not give discrete eigenvalues. The frequency 
component of the Green function of (1) can be expressed in terms of the reflection 
coefficients and the transmission coefficient [ S I ,  where the wavenumber p is replaced 
by a complex quantity K satisfying K~ = io, Im K z 0 (o is the frequency). Hence by 
investigating the asymptotic behaviour of the reflection coefficients we can gain an 
insight into the behaviour of the solutions of (1). 

2. Reflection coefficient for potentials which diverge at infinity 

We use the notation 

dx, . . . dx, exp 1 sjU(xj)  1 (*) [s,, s2,. . . , s,]: = . . . I I  m c x , G i z s  ... r x k r b  

where si = il ( i  = 1,2,. . . ). Results for small p are expressed in terms of integrals of 
the form (8). For simplicity we also write, for example, 
;...-+-j;=;-i, -1, +i, -,,. r - b  

= lab dx, jxI dx2 dx, dx, e - u ( x , ) - U ( x * ) + U ( r ~ ) - u [ ~ ~ ) ,  

And we introduce the operators 

Note that these operators, together with J,  = df d U, satisfy the same commutation 
relations as the angular momentum operators; 

[ I , ,  J-I = 2Jz [ Jz, J + 1 =  J+ [J,, J _ ] = - J _ .  (11) 
The expression for R,(-CO, x; p )  takes a simple form if U(x) goes to +a? or -CO faster 
than loglxl as x +  -m. Potentials which have a discrete eigenvalue spectrum satisfy 
this condition. If U ( x )  diverges to plus infinity faster than loglx/ in the limit x +  -CO, 
the reflection coefficient can be expressed as [6] 

m 

R,(-W, X; p )  = 1 + 
R - 2i eU'"' 

R n = l  g"(S,,~2, ..., ~ " - , ) [ - l , s ~ , s 2 , . . . , S " - 1 1 ~ -  ( n Z 2 )  

R.p" 
" = I  

[-I]?- (12) 3 -  

(r)  
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where X,,) denotes the sum over s1 = *l, . . . , sa-, = *l. To order p', the expression 
(12) reads 

R - m ,  X; P) 
-1+2j - , U I + ] ~  mP -4e2U'"'[--]r,p2 

- 2i(6 e3u1x)[- - -15, -2 

+2(24e4U(")[----]f , -12eZU(") [- - - + ] I , - 4 e 2 w -  - + -15 ) 4 

+2i(120 e5LJlx)[-----]E m -72 e3U[") [----+]E, 

- +]Im)p 3 

m P  

- 36 e'u1x)[- - -+ - I fm+ 12 euIx)[-- -++]I, 

12 e3u(x)[- - + - -If,+ 4 eu'"'[- - + - +]fm)ps+. . . . (14) 

The structure of (12) and (13) becomes clear if we express [-1, s,, s2,. . . , sn-,] 
graphically as shown in figure 2. Apart from the overall factor 2i" and II sj, the 
coefficient g. is obtained as the product of the value of the ordinate (=m) at each 
dot, and emu for the value of m at the end point of the graph. Divergent integrals 
such as [--++If, or [-++-]I, do not appear in the expression (12) since the 
graphs for them touch the m = 0 line (figure 3). 

- 

m 
Figure 2. Graphical expression o f  the three terms in R, (the third line in equation (14)). 
The factors for them are calculated as, respectively, I x 2 x 3 x 4 = 24, 1 x 2 x 3 x 2 = 12 and 
1 x 2 x I x 2 = 4. Since the graphs end at m = 4, m = 2 and m = 2, respectively, we get e"", 
e'' and e"'. 

m 

Figure3. Thegraphs for[--++ILaand [-++-I:, 
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Similarly, if U(x) tends to minus infinity faster than loglx), the reflection coefficient 
has the form 

We may use the expression (15) for the calculation of the eigenvalue A of the 
Fokker-Planck equation, which satisfies (4). Here we consider the case where U(x) 
goes to +m as x +  fm. Other cases can be similarly treated. Let us denote the nth 
eigenvalue by A.. The lowest eigenvalue is hn=O, corresponding to the eigenstate 
4 = e-". If we write A. = ki, the eigenvalue is obtained from the equation [5] 

R,(-m, X; k,)Rl(x: m; k c ) =  1 (!?) 

logR,(-m,x; k.)+log R l ( x , m ,  k.)=2n?ri (18) 
for each n. To calculate the eigenvalues we substitute (15) and the corresponding 
expression for log RI ,  

where x is arbitrary. This condition is equivalent to 
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into (18). We have 

( C ,  + C [ ) k .  +(C3+ C;)ki+.  . , = 2nT. 

In particular, if U(x) is a symmetric function of x, equation (20) reduces to 

C,k. + C,k) ,+.  . . = n?i (21) 
since C;n+l = C,.,, . Suppose that U(x) is a single-well potential which has only one 
minimum at, say, x = O  and rapidly increases with 1x1. Then the two integrals 
eucO)[-l, sI, s2,. . . , s2 "-,, -110, and -e-u'O'[-l,sl, SZ. .  . . , S ~ . - , , + I I ~ ~ ,  which 
appear as a pair in the expression of C,,,, for n 2 1 ( 1 5 ~ )  almost cancel one another. 
Hence the coefficients Cz, ,+ , (na  1) are small in comparison with C , .  This allows us 
to retain only the first term in the left-hand side of (20) as the first approximation for 
A , .  (We set x=O in (15) and (19).) We get 

For example, the eigenvalue for the potential U(x) =ax4 is calculated with (22) as 
2 A , = k : = (  T ) -1.50. 

2a ~ 4 )  

The precise value obtained by a numerical method is [7] A ,  = 1.37. This approximation 
gives a good result for potentials that diverge rapidly as 1x1 + 00. It is expected that 
(22) gives a still better approximation for potentials such as U = x6 or U = x*. 

On the other hand, this approximation is not so correct for potentials that diverge 
more slowly or potentials which have a complicated structure, e.g. double-well poten- 
tials. For instance, let us consider U = x2. Since C, = C [  =&, from (22) we get A I  = T, 

while the exact value is A ,  = 2. For such potentials, or when we want to calculate A, 
for large n, we must take into account the higher-order terms in (20) or (21). For the 
parabolic potential U = x2 the coefficient C3 can be exactly obtained as 

This leads to A,  = 2.22. 
It is in general difficult to  exactly calculate the integrals such as [--+]Om,. These 

integrals can be approximately obtained by expanding them in terms of [-I!,, which 
is easy to calculate. We expand eu as 

( 2 5 )  

where the coefficients 5,. t2 . .  . , are determined by comparing both sides of ( 2 5 )  order 
by order as a power series in terms of z. From ( 2 5 )  we get 

eu(r)-u(o) - - e  - U ( r ) + U ( O )  (1 +&-1:+5z[- -I:+ 5t-  - -I:+. . .) 

e-u'v' [--+]Om 
0 0 0 = eU"'([- - 5, [ -  - - - - - -I-,+. . .) 

([-30m)3+-1([-30m)4+-([-10m)s+. 5 5 2  . . 
4! 5 !  

The first term in the right-hand side of (26) is cancelled by the first term in the right-hand 
side of (15c). 
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As an example, let us calculate C3 for the potential U = $ x 4 :  

1 1 347 ([-]0m)'5+. . . 1 
6 420 4400 9 828 000 

[--+]Om=- ([-10m)3+- ([-lom)'+- ([-10,)"+ 

1 347 
9 828 000 

c 3 = 4  -([-lom)'+-([-]o_)~'+ 
{4:0 4400 

The eigenvalues A. = k i  for U ( x )  =ax4 are obtained from the solutions of C , k +  C3k3 = 
nn as 

A,=1.37 A2 = 4.54 A 3  = 8.31 A 4 =  12.2 A s =  16.0. (28) 

This agrees well with the result of a numerical calculation [7]: 

A, = 1.37 A2 = 4.45 A, 8.26 A.,= 12.8 A s  = 17.8. (29) 

Here we d o  not discuss the convergence of the series. It will be studied elsewhere. 
Higher-order integrals like [ - - - - +] or [ - - - + -1 can be similarly calculated. 

4. Reflection coefficient for finite intervals 

In section 3 we studied the reflection coefficient for the semi-infinite interval (-a, x), 
where the potential U ( x )  tends to infinity as x+ -m. In order to study the behaviour 
of solutions of the Fokker-Planck equation, it is necessary to consider the reflection 
coefficient for a finite interval (xo, x). It can be written as [a] 



The expression (30) with (31) can be used also for the case x,, = -a or x = +m, as 

form (32) are finite. 
The expression for y. is given as an infinite series. (Compare with (12) and (13).) 

It is illustrated graphically as figure 4. A finite expression for yn can be obtained as 
follows. We define 

!ang '9 !hP pntentia! mnverges ![! a finite !imh rufficient!y fast that the integrals of the 

j E e-u'"' (33) 

and we express JL- , . I  -,".*. . . JL2JL, as 

where 
"-1 

m = n - l +  1 si 
i = t  

The right-hand side of (34) can be obtained by substituting .. 
I- = -I+ I- I- 

into the left-hand side and using the commutation relation 

[ j - ,J+]=l .  

O t  \ 

+ + + ..... 

Figure 4. Graphical expression of (+ -+ --I!,. Note that the '+'plays the role of a '-' 
in the graph. 
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For example, let us calculate R,. Expression (34) reads 

I+ J+ J+ = J+ J+ J+ 

- J_J+J+ = fJ_J_J+ J+ J+ + $-J+J+J+j-  

- J+ J-  J+ = g J+ I+ J + j -  + f J+ J+ I+ I- J-  

.- 
- I  

J-J-J,  = j E J + J + J + L - .  

Hence 

(39) 

5. Expressions for large p 

Finally let us analyse the structure of the reflection coefficient for large p .  The large-p 
expressions are directly related to the short-time behaviour of the solutions, and they 
are useful for many problems, e.g. diffusion in a random medium. Moreover, there is 
a remarkable similarity between the large-p and the small-p expressions. 

We define, in a similar way as (8), the integrals 

The reflection coefficient may be written (see appendix B) 

A 

Rzn+i= 1 g2"+l(SI,S2. ..., S Z n ) ( - I . S I . S 2 , . . . . S 2 n ) : a  
( S I  = * I  :svm1 r* =0l 

where g is the same as (13). Explicitly, this reads 

R, = e2ipx((-)~0-2(--+):,+4(- -+ - +):,+ 12(-- -++):+. . . ). (43) 
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Higher-order terms in the expansion (42) are smaller when p has large positive 
imaginary part. So (42) can be used for the study of the large frequency behaviour of 
the reflection coefficient R,(xo, x; K). This expression (42) is valid also for xo= -m or 
x=m.  We can generalize (42) and get the expression for powers of R, 

m 

[R,(xo, x; p)]" =ezimp* krn+,,,(x0, x; p) 
" = O  

i;l"+m = c gz"+m(sl, s 2 , .  . , 1  S2n+m-l)(-lr SI,  $2,.  . ., S2n+m-,):m 
~sk=*l:x?;-~*k=l-ml 

(446) 

The similarity between the large-p expression and the small-p expression is clearly 
seen if we write 

R,(xo, X; P) 1 +i e-2iP= 

1 -i  e-2i"R,(xo, x; p) 

m 
= 1 + 2  E [i e2'"R,(x0, x; p)]' 

j = ,  

=z€!"(s,,~? ,..., ~.-,)(-1,sl,~Z,....~.-O~. (45) 
(*l 

The right-hand side of (45) has the same form as (12), where [-1,s,, s2,. . . , s._,]p" 
is replaced by (-1, sI, s2,. . . , sn-,). And, similarly, we have 

ie-ucxl 1-Rr(-m3,X;P) 
~ + R , ( - ~ , x ; P )  

m 
2"+l = E  E 

= [-]X,p-2[- - +]Xmp 

gz,+,(s,, sz, , . . , szn)[-l ,  SI, SZ, . . . , sz.l"p 
" = O  ( . *=* l :x~~ , .*=o l  

3 

+ (4[- - + - +I"+ 12[- - - + +]2,)pS+. . . 
where the right-hand side has the same structure as (42). 

(46) 

6. Conclusion 

We have studied the properties of the reflection coefficient of the Fokker-Planck 
equation, and derived some expressions for small and large wavenumbers. As an 
application we have considered only the eigenvalue problem, but the results of this 
paper are applicable to many other problems. Especially they are essential for the 
analysis the asymptotic behaviour of solutions, and they are also ciosely related to the 
theory of integrable systems. 

As can be seen from the results of this paper, the reflection coefficient has an 
interesting algebraic structure. It is expected that further investigation from an algebraic 
or geometrical viewpoint will produce results which are practically useful as well as 
theoretically interesting. 
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Appendix 1 

The reflection coefficient satisfies the differential equation 161 

d 
-RR,(-m,x;p)=2ipR,(-m,x;p)+f(x)[l-R~(-oo,x;p)]. (Al . l )  
d x  

From (Al . l )  it follows that 

=2ip+f(x)[R.(-oo,x; -p)-R,(-m, x; P ) I  
where we have used the relation 

R,(-co, x; p)R , ( -m,  x; - p )  = 1. 

Substituting (15) and (12) into (A1.2) we get 

which gives 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

and, for n 3 1, 

d - C2.+,=2ifR2.+, dx 
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So (A1.6) can be written as 

(A1.8) 

Using the relations 

and 

[-1, s;,. . . , s ~ ~ - I ] ? ~  (A1.lO) 
d 

-[-1,s, ,..., sZn-,, ~ ~ ~ ] ? ~ = e ~ 2 ~ ~ ( ~ )  
d x  

it can he easi!y verified that C; and C,,,, ( n  > 1) given hy (156) and (!Sc) satisfy 
(A1.5) and (A1.8), respectively. 

Appendix 2 

Equation (Al.]) transforms into 

W . 1 )  - d (e-2'PXR,)" = mf[e-2'PX(e-2'D"R ) m - l  - e2'p.Y(e-2'P"R,)m+ll 
dx 

for n = 1,2 , .  . . . Substituting (44a) into (A2.l) leads to 
~ ~~ . .  

(A2.2) 
dx ' ~ ~ '  

This means that each term in the expression of (ky)"', which has the form 
C(sl ,..., sJf, gives rise to the terms (m+l)C(s  ,,..., sf,-]): an: - ( m - l ) x  
C ( s  ,,.. .,st,+l): in (R, ) and (R, ) , respectively. Since R!')=(-)!, we 
get (446). 

mfre-2 'PX A m - ,  (2"+m-l)- 2 i P x ( R m + l  (2n+m- l )  !Rr ! e . I !  1. d , i y 2 . + m ,  = , I~ 

* m + ,  ( I + , )  - m - 1  ( 1 + 1 )  
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